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Abstract

The world of random phenomena exceeds the domain of the classical probability
theory. In the general case the description of randomness requires a specific set
of probability distributions (which is called statistical regularity) rather than
a singe distribution. Such statistical regularity arises as a limit of relative fre-
quencies. This approach to randomness allows to generalize the expected util-
ity theory in order to cover the decision problems under nonstochastic random
events. Applying the von Neumann –Morgenstern utility theorem, we derive the
maxmin expected utility representation for statistical regularities. The deriva-
tion is based on the axiom of the preference for stochastic risk, i.e. the decision
maker wishes to reduce the set of probability distributions to a single one.

Keywords: expected utility, risk, mass phenomena, statistical regularity,
nonstochastic randomness, multiple prior

1. Introduction

The expected utility theory of von Neumann and Morgenstern (1947) con-
siders the situations of objective risk relying on the frequentist notion of prob-
ability. Namely, the probability of an event is defined as its relative frequency
in a large number of trials.

The problem arises when event’s relative frequency do not tend to a limit
(Borel (1956)). In Kolmogorov (1986) we read “Speaking of randomness in the
ordinary sense of this word, we mean those phenomena in which we do not find
regularities allowing us to predict their behavior. Generally speaking, there are
no reasons to assume that random in this sense phenomena are subject to some
probabilistic laws. Hence, it is necessary to distinguish between randomness
in this broad sense and stochastic randomness (which is the subject of the
probability theory)”. Referring to this remark, we use the term nonstochastic
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phenomena in order to speak about random in a broad sense phenomena that
are not “the subject of the probability theory”.

Nowadays, the problem of revealing the regularities of nonstochastic phe-
nomena, as well as the corresponding decision rules, becomes more and more
important, in particular in relation to complex social and economic systems,
e.g. financial markets (Lux (1998); Chian et al. (2006); Miller and Ratti (2009);
Ivanenko and Pasichnichenko (2014)).

Some non-probabilistic mathematical formalism has been used for these pur-
poses (see for example, Dubois and Prade (1989)). However, we rely here on the
extension of the standard notions of the probability theory, given by the theo-
rem of existence of statistical regularities of mass phenomena (Ivanenko (2010);
Ivanenko and Labkovsky (2015)). Namely, every mass phenomenon (random
or deterministic) possesses a statistical regularity in the form of weak* closed
set of finitely additive probability distributions. The statistical regularity of a
stochastic phenomenon is a singleton.

This approach to randomness makes it possible to extend the domain of
the expected utility theory to cover the decision problems under nonstochastic
random events. This paper proposes an axiomatic foundation of the maxmin
expected utility decision rule in the statistical regularities framework.

Closed sets of probability measures have already been in use in the decision
theory yet without the meaning of laws of mass random phenomena. In partic-
ular, families of a priori distributions result from the axioms of rational choice
(Ivanenko and Labkovsky (1986); Gilboa and Schmeidler (1989); Chateauneuf
and Faro (2009); Pasichnichenko (2016)). Jaffray (1989) studied the families
of distributions that are cores of some belief function describing the situations
where some true probability exists but it is known only up to a set of measures.

The next section provides a brief extract from the theory of statistical reg-
ularities. Then section 3 states the main result. Finally, section 4 provides
summary and conclusions.

2. Statistical regularities

Let X be a nonempty set and Σ be an algebra of subsets of X. The simplest
example of a mass phenomenon is given by an ordinary sequence.

Definition 1. Two sequences x̄(1) and x̄(2) of elements of the set X are called
statistically equivalent (S-equivalent) if for any m ∈ N and any bounded mea-
surable functions γi : X → R (i = 1,m) the two sequences ȳ(1) and ȳ(2) defined
by

y(k)n =
1

n

n
∑

i=1

γ
(

x
(k)
i

)

, n ∈ N, k ∈ {1, 2} , γ = (γ1, . . . , γn)

have the same set of limit points in R
m.

In other words, S-equivalent sequences are indistinguishable with respect to
their limiting averages.
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Definition 2. A simple mass phenomenon is a class of S-equivalent sequences.

Let P be the set of all finitely additive probability measures on Σ, endowed
with the weak* topology. Recall that the base is formed by the sets

{

p ∈ P :
∣

∣

∫

fi(x) dp−
∫

fi(x) dp0
∣

∣ < ε, i = 1, n
}

,

where fi : X → R are bounded measurable functions, p0 ∈ P, ε > 0, and n ∈ N.
Let x̄ = {xn} be a sequence in X. Associate to x̄ the sequence {pn} of

measures from P defined by

pn(A) =
1

n

n
∑

i=1

1A(xi), A ∈ Σ, (1)

where 1A is an indicator of a set A. Hence, pn is the frequency distribution of
the number of hits in the sets A ∈ Σ of the first n terms of the sequence x̄. Due
to compactness of the space P this sequence has a non-empty closed set of limit
points.

Definition 3. The set P (x̄) of limit points of the sequence {pn} is called the
statistical regularity of the sequence x̄.

In general, P (x̄) consists of more then one point even for finite X as was
shown by Zorich et al. (2000).

Definition 4. The statistical regularity of a simple mass phenomenon is a
statistical regularity of any of its sequences.

The following theorem justifies the two above definitions.

Theorem 1.

1. For any sequence x̄ ∈ XN, any m ∈ N, and any bounded measurable
mappings γi : X → R (i = 1,m) the set of limit points of the sequence ȳ

defined by

yn =
1

n

n
∑

i=1

γ (xi) , n ∈ N, γ = (γ1, . . . , γn)

can be written as
{∫

γ(x) dp : p ∈ P (x̄)
}

.

2. The two sequences x̄(1), x̄(2) ∈ XN are S-equivalent if and only if P
(

x̄(1)
)

=

P
(

x̄(2)
)

.

Therefore, the statistical regularity P (x̄) contains all the information about
the limiting averages of any characteristic γ (xi). The proof rests on the follow-
ing general lemma:

Lemma 1. Let Y be a compact space, f : Y → R
m be a continuous mapping,

{xn} be a sequence in Y . Then

LIM {f(xn)} = f (LIM {xn}) ,

where LIM {xn} denotes the set of limit points of the sequence {xn}.
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Proof. For every neighborhood B of the point f(x) there is a neighborhood
A of a point x ∈ LIM {xn} such that f(A) ⊆ B. Since the sequence {xn}
infinitely many times hits A, the same is true for {f(xn)} and B. Hence,
f(x) ∈ LIM {f(xn)}.

If y ∈ LIM {f(xn)}, then f (xnk
) → y as k → ∞ for some subsequence {xnk

}.
Due to compactness of X the sequence {xnk

} has a limit point x ∈ LIM {xn}.
Suppose that ‖f(x)− y‖ = ε > 0. On the one hand, starting from some k0 ∈ N

we have ‖f(xnk
)− y‖ < ε

2 . On the other hand, the ε
2 -neighborhood of the point

f(x) contains the image of some neighborhood A of x. Since there is an xnk
in

A after k0, we arrive at a contradiction, that implies f(x) = y.

Proof of Theorem 1. 1) Let the sequence {pn} correspond to x̄ in the sense of
(1) and πγ : P → R

m be defined by

πγ(p) =

∫

γ(x) dp.

Since the mapping πγ is continuous, lemma 1 implies

LIM {πγ(pn)} = πγ (LIM {pn}) .

Rewriting the left-hand side

πγ(pn) =

∫

γ(x) dpn =
1

n

n
∑

i=1

γ (xi) = yn

and the right-hand side
LIM {pn} = P (x̄)

gives
LIM {yn} = πγ (P (x̄)) .

2) Suppose that the sequences x̄(1) and x̄(2) are S-equivalent and there exists
p0 ∈ P

(

x̄(1)
)

\P
(

x̄(2)
)

. Since P
(

x̄(2)
)

is closed, there is a neighborhood of the

point p0, that do not intersect with P
(

x̄(2)
)

. In other words, there are such real
number ε > 0 and bounded measurable functions fi : X → R (i = 1,m) such
that for any p ∈ P

(

x̄(2)
)

∣

∣

∫

fi(x) dp−
∫

fi(x) dp0
∣

∣ ≥ ε

for some i ∈ 1,m. Set γ = (f1, . . . , fm). Then the vector
∫

γ(x) dp0 is not in

{∫

γ(x) dp : p ∈ P
(

x̄(2)
)}

.

Hence, the first part of the theorem implies that the sequences x̄(1) and x̄(2) are
not S-equivalent, which is a contradiction.

The converse follows immediately from the first part of the theorem.

The connection between the notions introduced above and the probabilistic
notions follows directly from the strong law of large numbers (lemma 2).
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Lemma 2. Let X be a finite set, µ be a probability distribution on X, and
{ξn} be a sequence of independent random elements taking values in X with the
distribution µ. Then with probability 1 the statistical regularity P ({ξn}) consists
of the single element µ.

Thus, in case of finite X the regularity of a stochastic phenomenon is a
singleton.

Note that the regularity of a sequence is concentrated on the countable
subset of X. The more general notion of mass phenomena may be derived using
sampling nets.

Definition 5. A sampling net in X is a function ϕ from the directed set Λ to
the sampling space X∞ =

⋃

∞

n=1 X
n.

Everything that was done using sequences can be generalized using sampling
nets. First, extend the notion of S-equivalence to sampling nets and define a
(nonsimple) mass phenomenon to be a class of S-equivalent sampling nets. Then,
every λ ∈ Λ associate a frequency distribution pλ ∈ P of a sample ϕλ and define
the statistical regularity of a sampling net ϕ to be a set of limit points of the
net (pλ). Theorem 1 remains true if we replace sequences with sampling nets
and define

yλ =
1

l

l
∑

i=1

γ (xi) ,

when ϕλ = (x1, . . . , xl). Moreover, the general version of theorem 1 (Ivanenko
(2010)) contains the additional statement: if P is a non-empty closed subset
of the space P, then P is a statistical regularity of some sampling net in X.
The proof stems from the fact that the set of simple probability measures with
rational values is dense in P. This consideration leads to the following definition.

Definition 6. A non-empty closed subset of the space P is called a regularity
on X.

To sum up, statistical regularities extend the method of the probability
theory to the whole range of mass random phenomena. In the general case a
phenomenon is described by a family of probability distributions. The approach
is also appropriate to mass phenomena considered to be deterministic if we are
only interested in their average characteristics.

3. Nonstochastic risk

We call nonstochastic risk a decision-making situation, in which the out-
come of each decision d ∈ D is described by the regularity Pd on the set X of
consequences. We propose a decision model where the decision maker seeks to
maximize the quantity

U(Pd) = min
p∈Pd

∫

u(x) dp, d ∈ D.
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Let R be the set of all regularities on X. Let’s also identify a probability
measure p with the regularity {p} and thus consider P as a subset of R. For
α ∈ [0, 1] define the convex combination of regularities P ∈ R and q ∈ P as
follows:

αP + (1− α) q = {αp+ (1− α) q : p ∈ P} . (2)

The convex combinations in P are performed pointwise. The following lemma
shows that the set R is closed under operation (2).

Lemma 3. For any P ∈ R, q ∈ P and α ∈ [0, 1] the set αP + (1− α) q is a
regularity on X.

Proof. The case α = 0 is trivial. Otherwise, consider the mapping π : P → P
defined by

π (p) = αp+ (1− α) q, p ∈ P,

and prove that it is continuous. For this we will show that for any p, p0 ∈ P,
ε > 0, and any bounded measurable function f : X → R

∣

∣

∫

f(x) dp−
∫

f(x) dp0
∣

∣ < ε
α

implies
∣

∣

∫

f(x) dπ(p)−
∫

f(x) dπ(p0)
∣

∣ < ε.

Indeed,

∣

∣

∫

f(x) d (αp+ (1− α)q)−
∫

f(x) d (αp0 + (1− α)q)
∣

∣

= α
∣

∣

∫

f(x) dp−
∫

f(x) dp0
∣

∣ < ε.

Thus, for any neighborhood A of the point π(p0) there is a neighborhood of the
point p0 with the image in A. Therefore, the mapping π is continuous and the
set αP + (1− α)q is closed being the image of the compact set P .

Let R0 be a subset of R containing all one-point regularities and closed
under convex combinations (2). Suppose there is a decision maker’s preference
relation � on R0.

Some structural assumptions should be imposed on Σ. First, assume that
Σ contains the singleton subset {x} for each x ∈ X. Denote δx the one-point
measure: δx ({x}) = 1. A set A ⊆ X is a preference interval if x, y ∈ A

implies {z ∈ X : δx � δz � δy} ⊆ A. The second assumption is that Σ contains
all preference intervals.

Consider the following properties.

1. (Weak Order) The relation (�,R0) is complete and transitive.

2. (Continuity) For any P,Q ∈ R0 and r ∈ P the sets {α : αP + (1− α) r � Q}
and {α : Q � αP + (1− α) r} are closed.

3. (Independence) For any p, q, r ∈ P and α ∈ (0; 1) if p � q, then αp+ (1−
α)r � αq + (1− α)r.

4. (Dominance) For any p, q, r ∈ P and A ∈ Σ
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if p(A) = 1 and q � δx for any x ∈ A, then q � p;
if p(A) = 1 and δx � r for any x ∈ A, then p � r;

5. (Monotonicity) For any P ∈ R0 and q ∈ P if q � p for any p ∈ P , then
q � P .

6. (Preference for Stochastic Risk) P � 1
2P + 1

2p for any P ∈ R0 and p ∈ P .

Weak Order assumption is common. The key to understanding assumptions
2 and 6 is the interpretation of the convex combination (2) as a “two-step lot-
tery” similarly to the convex combinations of measures in the expected utility
theory (see the appendix). Here Continuity axiom of the expected utility theory
is extended to the convex combinations of regularities, while the Independence
axiom is left unchanged. Dominance axiom is used for obtaining the expected
utility representation for nonsimple probability measures. Note that the latter
two assumptions refer only to the preferences among measures. Monotonicity
axiom links the preference relation on regularities with the one on probability
measures. Assumption 6 should be understood as follows: the decision maker
would not refuse a 50-50 chance to exchange the nonstochastic outcome de-
scribed by a regularity P for a stochastic outcome described by a probability
measure p ∈ P , i.e. to reduce nonstochastic risk to stochastic.

Theorem 2. The preference relation (�,R0) satisfies assumptions 1 – 6 if and
only if there exists a utility function U : R0 → R of the form

U(P ) = min
p∈P

∫

u(x) dp, P ∈ R0, (3)

where u : X → R is a bounded measurable function. Furthermore, the mapping
V : R0 → R is also a utility function of the form (3) if and only if there are
a, b ∈ R, a > 0, such that V (P ) = aU(P ) + b.

Proof. Due to assumptions 1, 2, and 3 the preference relation (�,P) satisfies
the Herstein and Milnor (1953) conditions for the existence of linear utility
function U : P → R, which is unique up to a positive linear transformation.
Assumption 4 of Fishburn (1982) implies that there is a bounded measurable
function u : X → R, such that

U (p) =

∫

u(x) dp

for every p ∈ P.
Let p0 be an element of P ∈ R0 satisfying

U (p0) = min
p∈P

U (p) .

Such p0 exists, since the mapping U is continuous on the compact set P . As-
sumption 5 implies p0 � P . On the other hand, assumption 6 gives P �
1
2P + 1

2p0. Since p0 ∈ 1
2P + 1

2p0, the repeated use of assumption 6 gives
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1
2P + 1

2p0 � 1
4P + 3

4p0. Following the same pattern we obtain the sequence
of regularities

P �
1

2n
P +

(

1−
1

2n

)

p0.

Since 1
2n → 0 as n → ∞, assumption 2 implies P � p0. Extend U to R0 by

letting U (P ) = U (p0). Obviously, U is a utility function of the form (3).
The necessity of assumptions 2 and 6 follows from the linearity of U , i.e.

U (αP + (1− α) q) = αU (P ) + (1− α)U (q)

for any P ∈ R0, q ∈ P, and α ∈ [0, 1].

4. Conclusion

Theorem 2 provides an axiomatic foundation of the maxmin expected utility
rule for the decision problems under nonstochastic risk. In such problems the
choice has to be made among the weak* closed sets of probability measures. This
reflects the fact that in the general case the random phenomenon is described
by a family of probability distributions (Theorem 1). In case of stochastic phe-
nomenon with finite set of outcomes this family is a singleton. Correspondingly,
when R0 = P Theorem 2 degenerates into the expected utility theorem. The
key assumption we use is that the decision maker wishes to reduce the set of
probability distributions to a single one.
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Appendix

Let the statistical regularities of the phenomena A and B be P ∈ R and
q ∈ P respectively. The phenomenon C is represented by the following sampling
net ϕ : Λ → X∞: for each λ ∈ Λ before each observation there is an α-
chance of observing A and a complementary chance of observing B. Denote
rλ the frequency distribution of a sample ϕλ. If the sample is big enough,
then approximately α percentage of the observations belongs to A. They alone
constitute the sample from A with some distribution pλ. Similarly, denote the
distribution of the observations belonging to B as qλ. Then, the following
equalities hold (the first holds approximately):

rλ = αpλ + (1− α) qλ, P = LIM(pλ) , q = LIM(qλ) .

The following lemma implies that the statistical regularity LIM (rλ) of the phe-
nomenon C coincides with αP + (1− α) q.
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Lemma 4. If Λ is a directed set, pλ, qλ ∈ P for every λ ∈ Λ, α ∈ [0, 1], and
LIM (qλ) is a singleton, then

LIM (αpλ + (1− α) qλ) = αLIM (pλ) + (1− α) LIM (qλ) .

Proof. Fix p ∈ LIM (pλ), q ∈ LIM (qλ), λ0 ∈ Λ, and show that αpλ + (1− α) qλ
is in the (f1, . . . , fn, ε)-neighborhood of αp + (1− α) q for some λ ≥ λ0. Since
P is compact, q is a limit of the net (qλ) and there is λ1 ∈ Λ such that for
any λ ≥ λ1 qλ is in the (f1, . . . , fn, ε)-neighborhood of q. On the other hand,
there is λ2 ∈ Λ, such that λ2 ≥ λ0, λ2 ≥ λ1, and pλ2

is in the (f1, . . . , fn, ε)-
neighborhood of p. Then

∣

∣

∫

fi(x) d (αp+ (1− α) q)−
∫

fi(x) d (αpλ2
+ (1− α) qλ2

)
∣

∣

≤ α
∣

∣

∫

fi(x) dp−
∫

fi(x) dpλ2

∣

∣

+(1− α)
∣

∣

∫

fi(x) dq −
∫

fi(x) dqλ2

∣

∣ < ε

for each i = 1, n.
To prove the converse, suppose r ∈ LIM (αpλ + (1− α) qλ). Let M be the

directed set of pairs (λ,A), such that λ ∈ Λ, A is a neighborhood of r, αpλ +
(1− α) qλ ∈ A, and (λ1, A1) ≥ (λ0, A0) if and only if λ1 ≥ λ0 and A1 ⊆ A0.
For each µ ∈ M define

rµ = αpλ + (1− α) qλ, pµ = pλ, qµ = qλ,

when µ = (λ,A). Clearly, (rµ), (pµ), and (qµ) are the subnets of (αpλ + (1− α) qλ),
(pλ), and (qλ) respectively. Moreover, lim (rµ) = r. Since P is compact, (pµ)
has a limit point p ∈ LIM (pλ). We will show that r = αp+ (1− α) q.

For any µ ≥ µ1 rµ is in the (f, ε)-neighborhood of r and qµ is in the (f, ε)-
neighborhood of q. On the other hand, there is µ2 ≥ µ1 such that pµ2

is in the
(f, ε)-neighborhood of p. Then

∣

∣

∫

f(x) dr −
∫

f(x) d (αp+ (1− α) q)
∣

∣

≤
∣

∣

∫

f(x) dr −
∫

f(x) d (rµ2
)
∣

∣

+
∣

∣

∫

f(x) d (αpµ2
+ (1− α) qµ2

)−
∫

f(x) d (αp+ (1− α) q)
∣

∣

< ε+ αε+ (1− α) ε = 2ε.

Since f and ε are arbitrary, r = αp+ (1− α) q.
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